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Lyman-« forest
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Matter distribution in the IGM manifests itself in the form of HI Lyman-« forest absorption in the spectra of
distant quasars.

e Lyman-a forest probes matter in a quasi-linear regime (experiences the gravitational potential but not a
virialized system).
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lonization state of the IGM: Fluctuating Gunn-Peterson optical depth @
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e Under the assumption of thermal and ionization equilibrium, and ignoring the effects of thermal broadening, the
Gunn-Peterson optical depth is given as:
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e Larger Overdensities typically correspond to larger 1. Correlations in transmitted flux can be used as a probe
of underlying overdensity field (Non-trivial mapping from density to Flux).

e Alternative approach is to construct a count-based correlation statistics using distinct absorber treatment of
Lyman-« forest.

© Soumak Maitra 3



Clustering study based on cloud picture @

Flux-based statistics:
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Linear Theory Power spectrum (McDonald+2005) Warm Dark Matter model (Irsic+2017)
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Clustering in Lyman-« forest @

Redshift space (Irsic+2017) erse (Coppolani+2006)
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Clustering in Lyman-« forest

edshift space (Irsic+2017)
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e Peeples+2010a,b demonstrate that redshift space correlations are

dominated by thermal broadening (b = +/2kT/m) effects while
transverse correlations are dominated by pressure broadening.

e Thermal broadening washes away clustering informations at small
scales. ol

b=10,25 w=cste ]

o
Velocity (km/s)

© Soumak Maitra



Higher order clustering statistics in Lyman-« forest

Higher order clustering statistics largely unexplored in the case of Lyman-« forest.
Three-point statistics of clustering in Lyman-« forest would be useful for:

e Non-gaussianity in matter distribution at small scales and at high redshifts. Also calculate higher order bias.

e Act as an independent tool complementing the two-point statistics in constraining the cosmological
parameters (Fry 1994, Verde+2002) and the physical state of the IGM.

e Remove degeneracies between different cosmological parameters.

e Determine the amplitude, slope and curvature of the slope of the matter power spectrum with better precision
(Mandelbaum+2003).

e Probing primordial non-gaussianity (Hazra & Sarkar 2012)

e Probe the influence of large scale fluctuations on small scale power spectrum using squeezed limit bispectrum
(Zaldarriaga+2001).

e Probing the statistical anisotropy of clustering in the cosmic web, using projected quasar triplet sightlines.
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Higher order clustering statistics in Lyman-« forest

\/

Partial Redshift space +

transyelte correkition. Transverse correlation.

Redshift space correlation.
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First detection of non-gaussianity in low-z Lyman-« forest (Maitra+2020b)
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e 82 quasar sightlines from HST-COS

e Redshift based clustering study (colinear triplet
configurations probed along quasar sightlines;
n=rp= fH,rg = ZFH)

e Lyman-a forest probed in z < 0.48.

Reduced ¢ or Q=¢/(&1 x &2 + &2 x €3+ &3 x &)
[Hierarchical Ansatz]
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First detection of non-gaussianity in low-z Lyman-« forest (Maitra+2020b) @
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e 82 quasar sightlines from HST-COS

e Redshift based clustering study (colinear triplet
configurations probed along quasar sightlines;
n=rp= fH,rg = ZTH)

e Lyman-a forest probed in z < 0.48.
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First detection of non-gaussianity in low-z Lyman-« forest (Maitra+2020b)
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e HI column density(Ny1) <= Baryonic overdensity (A).
e Strong dependence of ¢ and ¢ on Ny thresholds.

e Effect on Q very weak.
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First detection of non-gaussianity in low-z Lyman-« forest (Maitra+2020b)
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First detection of non-gaussianity in low-z Lyman-« forest (Maitra+2020b)
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e Weak dependence on line-width parameter b = /2kT/m upto a b threshold of 30km/s. Sharp decrease in

correlation amplitude at b > 40km/s (Broad Lyman-a Absorbers or BLAS).

e Frequency of occurrence of atleast 1 BLAS in triplet systems (~88%) is a factor ~ 3 higher than that found

among the full sample (~32%).

e BLAs possibly trace the warm-hot intergalactic medium (WHIM) in the temperature range between 10° and 10°
K (Richter+2006). Arises from collisionally ionized regions in filaments.
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First detection of non-gaussianity in low-z Lyman-« forest (Maitra+2020b) @

Association with metal systems and galaxies:

e Only 40% of the total observed Lyman-« triplets have associated metals with them.
e Majority of the triplets have multiple nearby galaxies.

e 84% of the triplets have at least one nearby galaxy within a velocity separation of 500km/s. The impact
parameters of these galaxies range from 62-3854 pkpc (median of 405 pkpc)

e The median impact parameter seems to decrease for higher Ny thresholds.
e BLAs occuring more frequently with triplets and association with nearby galaxies suggest Lyman-« triplets
originating from filamentary structures.
Trends in simulations:
e Simulations suggest line of sight peculiar velocities tend to enhance the observed ¢ and ¢ by ~60%, whereas
the Q values are suppressed by ~70%.
e Feedback processes have little effect on the observed clustering.
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Detection of non-gaussianity in high-z Lyman-« forest (In prep.)
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Figure: High-z correlations of Niz; > 10™-°cm~2 in KODIAQ data.
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a)

e A, v,T obtained from GADGET-3 hydrodynamical
simulation.
e Shoot triplet sightlines through simulation box.
e Investigate ¢ and its dependencies on:
e Scale. 4
e Angle.
e Nyp or conversely A.
e Thermal history.
e We consider only isosceles configurations for ¢
(Arpy = Argy =1).
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a)
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a)
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a) @

Effect of thermal history:
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a)

Effect of thermal history:
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e Correlations for a fixed Ny threshold depends on A
field + local thermal effects.

e Local thermal effects are imprinted on the A to Ny
mapping.

e Using a constant A threshold should statistically
show the effects of pressure broadening.



Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a)

Effect of thermal history:
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®

in Simulations at z ~ 2 (Maitra+2020a)

Transverse three-point correlation
Validity of Hierarchical Ansatz:
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a)
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a) @
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Transverse three-point correlation in Simulations at z ~ 2 (Maitra+2020a) @
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Three-point correlation suppressed at scales below 3h~'cMpc [Q, -ve]. Source?

We used the SDSS catalog to get an estimate of the number of quasar triplets present and achievable significance of
three-point correlation detection with these sample of quasars.

e For# < 20°, ¢ can be observed the scales of 4 and 5h—'cMpc with 4.8¢ and 4.5¢ respectively. For that, we
need to observe 70 quasar triplets (210 spectra) having r = 4h—'cMpc and 86 quasar triplets (i.e 258 spectra)
having r = 5h~'cMpc.

e For 6 = 90°, the most significant detection can be achieved for 2 and 3h—'cMpc (4.40 and 4.7c respectively).
We need to observe 42 quasar triplets having r = 2h—'cMpc and 96 quasar triplets having r = 3h—'cMpc.
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Observational prospects with QSO triplet sightlines (Maitra+2019)
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Future plan @

Extend study to non-standard ACDM models.

We would like identify filamentary structures associated with galaxies (near observed Lyman-« triplets) and try
to explore the association of such structures with observed Lyman-a triplets.

Investigate partial redshift space + transverse three-point correlation using projected quasar pairs
(Findlay+2018). .

We identified a unique configuration of 7 quasars (with r < 20.5 and z > 2.2) in SDSS catalog that opens the
opportunity to probe correlated IGM structures at z ~ 2. Use these 7 quasar sightlines to study the directional
dependence of density/radiation field around the foreground QSOs through the analysis of the transverse
proximity effect.

Theoretical understanding of metal distribution in IGM (project led by Sukanya Mallik, IUCAA).

Inversion problem: Mapping the observed transmitted flux to underlying overdensity and velocity fields.
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